久久国产亚洲欧美日韩精品,国产精品一区在线麻豆,国产拍揄自揄精品视频网站,欧美日本一区二区三区免费,无码福利视频,亚洲无码视频喷水,亚洲三级色,亚洲狠狠婷婷综合久久久久

小議抽象函數(shù)的性質(zhì)論文

2021-04-23 論文

  [摘 要]高中數(shù)學(xué)的重點(diǎn)章節(jié),對函數(shù)性質(zhì)的考察一直是高考的熱點(diǎn)。學(xué)生在此之前已經(jīng)對函數(shù)的對稱性和周期性有了初步的理解,但是認(rèn)識比較膚淺,缺乏全面深入的研究。

  [關(guān)鍵詞]抽象函數(shù) 周期性 單調(diào)性 奇偶性

  做抽象函數(shù)的題目需要有嚴(yán)謹(jǐn)?shù)倪壿嬎季S能力、豐富的想象力以及函數(shù)知識靈活運(yùn)用的能力。近幾年高考中也常出現(xiàn)涉及抽象函數(shù)的題目,大多考查的是函數(shù)的單調(diào)性、奇偶性、對稱性和周期性。而在實際教學(xué)中我感覺同學(xué)們對于抽象函數(shù)周期性的判定和運(yùn)用比較困難,所以先研究一下抽象函數(shù)的周期性問題。

  預(yù)備知識:對于函數(shù)定義域內(nèi)的每一個x,若存在某個常數(shù)T(T≠0),使f(x+T)=f(x)總成立,則f(x)是周期函數(shù)。T是f(x)的一個周期,若T是f(x)的一個周期,則kT(k∈Z且k≠0)也是f(x)的周期。

  一、函數(shù)的對稱性

  定理1.若函數(shù)y=f (x)定義域為R,且滿足條件:f (a+x)=f (b-x),則函數(shù)y=f (x)的圖象關(guān)于直線x=對稱。

  推論1.若函數(shù)y=f (x)定義域為R,且滿足條件:f (a+x)=f (a-x)

  (或f (2a-x)= f (x) ),則函數(shù)y=f (x)的圖像關(guān)于直線x= a對稱。

  定理2.若函數(shù)y=f (x)定義域為R,且滿足條件:f (a+x)+f (b-x)=c,(a,b,c為常數(shù)),則函數(shù)y=f (x)的圖象關(guān)于點(diǎn)對稱。

  推論1.若函數(shù)y=f (x)定義域為R,且滿足條件:f (a+x)+f (a-x)=0,(a為常數(shù)),則函數(shù)y=f (x)的圖象關(guān)于點(diǎn)(a,0)對稱。

  二、抽象函數(shù)周期的求法

  由于抽象函數(shù)無具體的解析式,所以應(yīng)根據(jù)周期函數(shù)的定義來解決,大致分為以下幾個類型:

  1.型如f(x+a)=f(x+b)(a≠b)

  分析:用替換思想將條件等式化成定義形式.將原等式中的x用x-a(或x-b)來替換.得f(x-a+a)=f(x-a+b)即f(x)=f[x+(b-a)]所以根據(jù)周期函數(shù)的定義得f(x)是周期函數(shù)且b-a是其一個周期.若用x-b替換x得f(x)=f[x+(a-b)]所以f(x)是周期函數(shù)且a-b是其一個周期。

  2.型如f(x)=-f(x+a)(a≠0)

  分析:條件與定義相比多了一個負(fù)號,故可用替換和代入的方法變?yōu)槎x形式。將原等式中的x用x+a替換得f(x+a)=-f(x+2a),則所以f(x+2a)=-f(x+a)=f(x),所以f(x)是周期性函數(shù)且2a是其一個周期。

  3.型如f(x)= (a≠0)

  分析:與上一類型相仿用替換和代入的`方法得到周期函數(shù)定義的形式.將原條件等式中的x用x+a替換得f(x+a)= ,則f(x+2a)= =f(x)

  所以f(x)是周期函數(shù),2a是其一個周期.

  從以上可發(fā)現(xiàn)求周期,主要是用替換與代入的思想將原條件等式化成定義的形式得到周期.

  三、抽象函數(shù)周期性與函數(shù)的奇偶性,對稱性的關(guān)系

  2001年全國高考的第22題第2問就涉及這方面的知識,仔細(xì)分析發(fā)現(xiàn)其結(jié)論可推廣,在很多函數(shù)小題中有靈活運(yùn)用。

  1.設(shè)條件A:定義在R上的函數(shù)f(x)是一個偶函數(shù)。條件B:f(x)關(guān)于x=a對稱條件C:f(x)是周期函數(shù),且2a是其一個周期.結(jié)論:已知其中的任兩個條件可推出剩余一個。證明:①已知A、B→C(2001年高考第22題第二問)∵f(x)是R上的偶函數(shù)∴f(-x)=f(x)又∵f(x)關(guān)于x=a對稱∴f(-x)=f(x+2a)∴f(x)=f(x+2a)∴f(x)是周期函數(shù),且2a是其一個周期②已知A、C→B∵定義在R上的函數(shù)f(x)是一個偶函數(shù)∴f(-x)=f(x)又∵2a是f(x)一個周期∴f(x)=f(x+2a)∴f(-x)=f(x+2a)∴f(x)關(guān)于x=a對稱③已知C、B→A∵f(x)關(guān)于x=a對稱∴f(-x)=f(x+2a)又∵2a是f(x)一個周期∴f(x)=f(x+2a)∴f(-x)=f(x)∴f(x)是R上的偶函數(shù)看來偶函數(shù)性質(zhì)加上對稱性可推出同期性。那么奇函數(shù)是不是也可以呢?經(jīng)分析可得:

  2.定義在R上的奇函數(shù)f(x)關(guān)于x=a對稱,則f(x)是周期函數(shù),4a是其一個周期。證明:∵定義在R上的奇函數(shù)f(x)∴f(-x)=-f(x)又∵f(x)關(guān)于x=a對稱∴f(-x)=f(x+2a)∴f(x)=-f(x+2a)再根據(jù)周期求法中的第二類型可得f(x)=f(x+4a)(替換+代入)故f(x)是周期函數(shù),4a是其一個周期。奇函數(shù)本身是一個中心對稱圖形,關(guān)于原點(diǎn)對稱那么若f(x)關(guān)于x軸上另一點(diǎn)線中心對稱,再加對稱性是否也可推出周期性嗎?經(jīng)分析可得:

  3.f(x)關(guān)于(a、0)成中心對稱且f(x)關(guān)于x=b成軸對稱(a≠b),則f(x)是周期函數(shù)且4(b-a)是其一個周期。若f(x)關(guān)于x軸上的兩個點(diǎn)成中心對稱呢?

  4.定義在R上的f(x)關(guān)于(a、0)和(b、0)都成中心對稱則f(x)是周期函數(shù)且2(b-a)是一個周期。證明:∵定義在R上的f(x)關(guān)于(a、0)成中心對稱∴f(-x)=-f(x+2a)又∵定義在R上的f(x)關(guān)于(b、0)成中心對稱∴f(-x)=-f(x+2b)∴f(x)是周期函數(shù)且2(b-a)是其一個周期將原條件換成關(guān)于x=a,x=b對也行,結(jié)論成立。綜上可知函數(shù)的周期性、對稱性、奇偶性之間的關(guān)系相當(dāng)緊密,靈活運(yùn)用可簡化題目難度。

  例1.f(x)是R上的奇函數(shù)f(x)=-f(x+3),x∈[0,3/2]時f(x)=x,則f(2003)=?解:方法一∵f(x)=-f(x+3)(替換、代入)∴f(x)=f(x+6)∴6是f(x)的一個周期f(x)∴f(2003)=f(334*6-1)=f(-1)=-f(1)=-1方法二∵f(x)=-f(x+3),f(x)是奇函數(shù)∴f(-x)=f(x+3)∴f(x)關(guān)于x=3/2對稱又∵f(x)是奇函數(shù)∴6是f(x)的一個周期,以下與方法一相同。

  例2.f(x)是R上的偶函數(shù),f(1-x)=f(x+1),x∈[-1,0]時f(x)=Log0.5(-x)則f(2003)=?解:∵f(x)是偶函數(shù),f(1-x)=f(x+1)(即f(x)關(guān)于x=1對稱)∴根據(jù)結(jié)論1得2是f(x)的一個周期∴f(2003)=f(2*1002-1)=f(-1)=Log0.5(1)=0

  例3.f(x)滿足f(x)=-f(6-x),f(x)=f(2-x),若f(a)=-f(2000),a∈[5,9]且f(x)在[5,9]上單調(diào)。求a的值。解:∵f(x)=-f(6-x)∴f(x)關(guān)于(3,0)對稱∵f(x)=f(2-x)∴f(x)關(guān)于x=1對稱∴根據(jù)結(jié)論3得8是f(x)的一個周期∴f(2000)=f(0)又∵f(a)=-f(2000)∴f(a)=-f(0)又∵f(x)=-f(6-x)∴f(0)=-f(6)∴f(a)=f(6)∴a=6

  利用周期函數(shù)的周期求解函數(shù)問題是基本的方法,此類問題的解決應(yīng)注意到周期函數(shù)定義、緊扣函數(shù)圖象特征,尋找函數(shù)的周期,從而解決問題。

【小議抽象函數(shù)的性質(zhì)論文】相關(guān)文章:

小議行乞權(quán)性質(zhì)論文05-27

論文有關(guān)抽象函數(shù)的全面探析05-13

有關(guān)抽象函數(shù)的全面探析論文05-13

《余弦函數(shù)的性質(zhì)》說課稿02-25

指數(shù)函數(shù)及性質(zhì)說課稿06-17

余弦函數(shù)的性質(zhì)說課稿范文04-27

正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì)的說課稿02-25

指數(shù)函數(shù)及性質(zhì)說課稿范文11-03

《對數(shù)函數(shù)的圖像與性質(zhì)》說課稿11-09

主站蜘蛛池模板: 97se亚洲综合在线| 五月丁香伊人啪啪手机免费观看| 激情在线网| 污网站免费在线观看| 国产欧美日韩另类精彩视频| 国产丝袜啪啪| 久久国产拍爱| 亚洲男女天堂| 玖玖免费视频在线观看| 亚洲人成网站日本片| 日韩国产综合精选| 午夜小视频在线| 国产欧美综合在线观看第七页| 老司机精品久久| 色综合成人| 中文字幕av一区二区三区欲色| 日韩一级二级三级| 久久久久亚洲AV成人网站软件| 88av在线| 国内精品久久久久久久久久影视 | 欧美成人看片一区二区三区| 日韩精品亚洲人旧成在线| 高清色本在线www| 99免费视频观看| 成人福利免费在线观看| 精品国产乱码久久久久久一区二区| 久久精品人妻中文系列| 久久精品人人做人人爽97| 夜色爽爽影院18禁妓女影院| 在线无码九区| 欧美精品在线免费| 国产精品无码作爱| 久久精品一品道久久精品| 国产人人射| 欲色天天综合网| 欧美成人午夜在线全部免费| 免费AV在线播放观看18禁强制| 日韩福利在线观看| 中国精品自拍| 国产va免费精品观看| 欧美国产中文| 国产永久在线视频| 亚洲综合经典在线一区二区| 中国国产A一级毛片| 黄色网址手机国内免费在线观看| 2021国产乱人伦在线播放| www.日韩三级| 97在线免费视频| 免费一级无码在线网站 | 国产高清在线丝袜精品一区| 视频在线观看一区二区| 亚洲精品福利视频| 中文无码精品A∨在线观看不卡| 欧美一道本| 亚洲无限乱码| 国产精品成人第一区| 欧美日韩高清在线| 91精品人妻互换| 亚洲国产精品一区二区第一页免| 不卡视频国产| 曰韩免费无码AV一区二区| 欧美精品啪啪| 久久人体视频| 国产精品漂亮美女在线观看| 在线视频亚洲色图| 熟女成人国产精品视频| 日韩精品一区二区三区免费| 久久国产成人精品国产成人亚洲| 久久亚洲中文字幕精品一区| 免费网站成人亚洲| 直接黄91麻豆网站| 伊人久久大香线蕉影院| av尤物免费在线观看| 2019国产在线| 狠狠综合久久| 国产在线97| 另类欧美日韩| 国产精品美女免费视频大全| 日韩A∨精品日韩精品无码| 欧美国产日产一区二区| 日本道综合一本久久久88| 国精品91人妻无码一区二区三区|